您现在的位置是: 首页 > 网站优化 网站优化

数据统计分析_数据统计分析的基本步骤

zmhk 2024-04-29 人已围观

简介数据统计分析_数据统计分析的基本步骤       现在我来为大家分享一下关于数据统计分析的问题,希望我的解答能够帮助到大家。有关于数据统计分析的问题,我们开始谈谈吧。1.如何统计和分析利用网络大数据?2.

数据统计分析_数据统计分析的基本步骤

       现在我来为大家分享一下关于数据统计分析的问题,希望我的解答能够帮助到大家。有关于数据统计分析的问题,我们开始谈谈吧。

1.如何统计和分析利用网络大数据?

2.如何进行统计数据分析

3.统计分析主要包括

4.数据统计分析怎么做

5.数据分析是什么

6.简述至少6种对数据进行统计分析的方法

数据统计分析_数据统计分析的基本步骤

如何统计和分析利用网络大数据?

       如何统计和分析利用网络大数据?

       大数据给互联网带来的是空前的信息大爆炸,它不仅改变了互联网的数据应用模式,还将深深影响着人们的生产生活。深处在大数据时代中,人们认识到大数据已经将数据分析的认识从“向后分析”变成“向前分析”,改变了人们的思维模式,但同时大数据也向我们提出了数据采集、分析和使用等难题。在解决了这些难题的同时,也意味着大数据开始向纵深方向发展。

       一、数据统计分析的内涵

       近年来,包括互联网、物联网、云计算等信息技术在内的IT通信业迅速发展,数据的快速增长成了许多行业共同面对的严峻挑战和宝贵机遇,因此现代信息社会已经进入了大数据时代。事实上,大数据改变的不只是人们的日常生活和工作模式、企业运作和经营模式,甚至还引起科学研究模式的根本性改变。一般意义上,大数据是指无法在一定时间内用常规机器和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。网络大数据是指“人、机、物”三元世界在网络空间中彼此交互与融合所产生并在互联网上可获得的大数据。

       将数据应用到生活生产中,可以有效地帮助人们或企业对信息作出比较准确的判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,并使之成为信息的过程。也就是指个人或者企业为了解决生活生产中的决策或者营销等问题,运用分析方法对数据进行处理的过程。所谓的数据统计分析,就是运用统计学的方法对数据进行处理。在以往的市场调研工作中,数据统计分析能够帮助我们挖掘出数据中隐藏的信息,但是这种数据的分析是“向后分析”,分析的是已经发生过的事情。而在大数据中,数据的统计分析是“向前分析”,它具有预见性。

       二、大数据的分析

       1.可视化分析。

       数据是结构化的,包括原始数据中的关系数据库,其数据就是半结构化的,譬如我们熟知的文本、图形、图像数据,同时也包括了网络的不同构型的数据。通过对各种数据的分析,就可以清晰的发现不同类型的知识结构和内容,包括反映表征的、带有普遍性的广义型知识;用于反映数据的汇聚模式或根据对象的属性区分其所属类别的特征型知识;差异和极端特例进行描述的差异型知识;反映一个事件和其他事件之间依赖或关联的关联型知识;根据当前历史和当前数据预测未来数据的预测型知识。当前已经出现了许多知识发现的新技术,其中之一就是可视化方法。数据可视化技术有3个鲜明的特点:第一,与用户的交互性强。用户不再是信息传播中的受者,还可以方便地以交互的方式管理和开发数据。第二,数据显示的多维性。在可视化的分析下,数据将每一维的值分类、排序、组合和显示,这样就可以看到表示对象或事件的数据的多个属性或变量。第三,最直观的可视性特点。数据可以用图像、曲线、二维图形、三维体和动画来显示,并可对其模式和相互关系进行可视化分析。

       2.数据挖掘算法。

       数据挖掘是指数据库中的知识发现,其历史可以追溯到1989年美国底特律市召开的第一届KDD国际学术会议上,而第一届知识发现和数据挖掘(DataMining,DM)国际学术会议是1995年加拿大召开的,会议上将数据库里存放的数据生动地比拟成矿床,从而“数据挖掘”这个名词很快就流传开来。数据挖掘的目的是在杂乱无章的数据库中,从大量数据中找到有用的、合适的数据,并将其隐含的、不为人知的潜在价值的信息揭示出来的过程。事实上,数据挖掘只是整个KDD过程中的一个步骤。

       数据挖掘的定义没有统一的说法,其中“数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声的具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在有用的知识或模式的过程”是被广泛接受的定义。事实上,该定义中所包含的信息——大量真实的数据源包含着噪声;满足用户的需求的新知识;被理解接受的而且有效运用的知识;挖掘出的知识并不要求适用于所有领域,可以仅支持某个特定的应用发现问题。以上这些特点都表现了它对数据处理的作用,在有效处理海量且无序的数据时,还能够发现隐藏在这些数据中的有用的知识,最终为决策服务。从技术这个角度来说,数据挖掘就是利用一系列相关算法和技术从大量的数据中提取出为人们所需要的信息和知识,隐藏在数据背后的知识,可以以概念、模式、规律和规则等形式呈现出来。

       3.预测性分析能力。

       预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。大数据分析最终要实现的应用领域之一就是预测性分析,可视化分析和数据挖掘都是前期铺垫工作,只要在大数据中挖掘出信息的特点与联系,就可以建立科学的数据模型,通过模型带入新的数据,从而预测未来的数据。作为数据挖掘的一个子集,内存计算效率驱动预测分析,带来实时分析和洞察力,使实时事务数据流得到更快速的处理。实时事务的数据处理模式能够加强企业对信息的监控,也便于企业的业务管理和信息更新流通。此外,大数据的预测分析能力,能够帮助企业分析未来的数据信息,有效规避风险。在通过大数据的预测性分析之后,无论是个人还是企业,都可以比之前更好地理解和管理大数据。

       尽管当前大数据的发展趋势良好,但网络大数据对于存储系统、传输系统和计算系统都提出了很多苛刻的要求,现有的数据中心技术很难满足网络大数据的需求。因此,科学技术的进步与发展对大数据的支持起着重要的作用,大数据的革命需要考虑对IT行业进行革命性的重构。网络大数据平台(包括计算平台、传输平台、存储平台等)是网络大数据技术链条中的瓶颈,特别是网络大数据的高速传输,需要革命性的新技术。此外,既然在大数据时代,任何数据都是有价值的,那么这些有价值的数据就成为了卖点,导致争夺和侵害的发生。事实上,只要有数据,就必然存在安全与隐私的问题。随着大数据时代的到来,网络数据的增多,使得个人数据面临着重大的风险和威胁,因此,网络需要制定更多合理的规定以保证网络环境的安全。

如何进行统计数据分析

       1、对比分析法

       就是将某一指标与选定的比较标准进行比较,比如:与历史同期比较、与上期比较、与其他竞争对手比较、与预算比较。一般用柱状图进行呈现。

       2、结构分析法

       就是对某一项目的子项目占比进行统计和分析,一般用饼图进行呈现。比如:A公司本年度营业额为1000万,其中饮料营业额占33.6%、啤酒占55%,其他产品的营业额占11.4%。

       3、趋势分析法

       就是对某一指标进行连续多个周期的数据进行统计和分析,一般用折线图进行呈现。比如:A公司前年度营业额为880万,去年900万,本年度1000万,预计明年为1080万。

       4、比率分析法

       就是用相对数来表示不同项目的数据比率,比如:在财务分析中有?盈利能力比率、营运能力比率、偿债能力比率、增长能力比率?。

       5、因素分析法

       就是对某一指标的相关影响因素进行统计与分析。比如,房价与物价、土地价格、地段、装修等因素有关

       6、综合分析法

       就是运用多种分析方法进行数据的统计与分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

统计分析主要包括

       根据百度知道查询进行统计数据分析有8种方法,具体方法如下:

       1、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。有比较才能鉴别。单独看一些指标,只能说明总体的某些数量特征,得不出什么结论性的认识。一经过比较,如与国外、外单位比,与历史数据比,与计划相比,就可以对规模大小、水平高低、速度快慢作出判断和评价。

       2、分组分析法指标对比分析法是总体上的对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。

       3、时间数列及动态分析法时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。

       4、指数分析法指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。

       5、平衡分析法平衡分析是研究社会经济现象数量变化对等关系的一种方法。它把对立统一的双方按其构成要素一一排列起来,给人以整体的概念,以便于全局来观察它们之间的平衡关系。平衡关系广泛存在于经济生活中,大至全国宏观经济运行,小至个人经济收支。平衡种类繁多,如财政平衡表、劳动力平衡表、能源平衡表、国际收支平衡表、投入产出平衡表,等等。平衡分析的作用:一是从数量对等关系上反映社会经济现象的平衡状况,分析各种比例关系相适应状况。二是揭示不平衡的因素和发展潜力。三是利用平衡关系可以从各项已知指标中推算未知的个别指标。

       6、综合评价分析社会经济分析现象往往是错综复杂的,社会经济运行状况是多种因素综合作用的结果,而且各个因素的变动方向和变动程度是不同的。如对宏观经济运行的评价,涉及生活、分配、流通、消费各个方面。对企业经济效益的评价,涉及人、财、物合理利用和市场销售状况。如果只用单一指标,就难以作出恰当的评价。

       7、景气分析经济波动是客观存在的,是任何国家都难以完全避免的。如何避免大的经济波动,保持经济的稳定发展,一直是各国政府和经济之专家在宏观调控和决策中面临的重要课题,景气分析正是适应这一要求而产生和发展的。景气分析是一种综合评价分析,可分为宏观经济景气分析和企业景气调查分析。

       8、预测分析宏观经济决策和微观经济决策,不仅需要了解经济运行中已经发生了的实际情况,而且更需要预见未来将发生的情况。根据已知的过去和现在推测未来,就是预测分析。

数据统计分析怎么做

       统计分析主要包括介绍如下:

       统计分析主要包括描述性统计和分析性统计。

       统计分析(statistical analysis)是商业智能(BI)的一方面,涉及收集、审查业务数据和趋势报告。

       统计分析是指运用统计方法及与分析对象有关的知识,从定量与定性的结合上进行的研究活动。它是继统计设计、统计调查、统计整理之后的一项十分重要的工作,是在前几个阶段工作的基础上通过分析从而达到对研究对象更为深刻的认识。

       它又是在一定的选题下,集分析方案的设计、资料的搜集和整理而展开的研究活动。系统、完善的资料是统计分析的必要条件。

       运用统计方法、定量与定性的结合是统计分析的重要特征。随着统计方法的普及,不仅统计工作者可以搞统计分析,各行各业的工作者都可以运用统计方法进行统计分析。只将统计工作者参与的分析活动称为统计分析的说法严格说来是不正确的。

       提供高质量、准确而又及时的统计数据和高层次、有一定深度、广度的统计分析报告是统计分析的产品。从一定意义上讲,提供高水平的统计分析报告是统计数据经过深加工的最终产品。

       通过SPC系统可以对机械加工的产品零件进行过程分析、控制图分析、直方图分析、趋势图分析和过程能力分析等。

       并可以按产品、车间、工序等不同纬度对批次的质量指标(标准偏差、CPK)分析,如:按年度、月度、周进行趋势图分析、对比分析。可以直观的看出产品零件批与批之间的波动情况。

       在热处理、成型加工车间使用自动采集的方式获取工艺过程数据,并可以使用统计分析绘制实际工艺参数图形,通过与工艺要求参数图形的对比,用于分析热处理、成型加工等过程的关键参数的执行符合程度。

       这些分析工具在SPC系统中应用于不同阶段,侧重于不同方面,保证了SPC系统目标的实现,同时也可以通过对数据的分析来形成和导出分析报告。

数据分析是什么

       数据统计分析做法参考如下:

       工具/原料:戴尔XPS13-9350-3708、win10、EXCEl2019。

       1、电脑打开excel,新建表格。根据需要输入数据,点击空白处使用公式进行数据统计。

       2、根据需要下拉得到相似算法的数据。

       3、完成数据统计分析,全部选中。插入图表,更直观分析统计数据。

数码统计分析的作用

       

       1、描述性作用:通过对数据进行描述性分析,可以了解数据的基本特征和规律。例如,我们可以通过对一组数据的平均值、标准差、最大值、最小值等指标进行分析,来描述这组数据的分布情况和变化趋势。

       2、探索性作用:通过对数据进行探索性分析,可以发现数据之间的关系和规律。例如,我们可以通过对两组数据之间的相关性进行分析,来探索它们之间的关系,从而发现它们之间的联系和影响。

       3、预测性作用:通过对数据进行预测性分析,可以预测未来的趋势和变化。例如,我们可以通过对某个市场的历史销售数据进行分析,来预测未来的销售趋势和市场需求。

简述至少6种对数据进行统计分析的方法

       数据分析是指用适当的统计分析方法对收集来的大量数据进行分析。

       数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。定性数据中表现为类别,但不区分顺序的,是定类数据,如性别、品牌等;定性数据中表现为类别,但区分顺序的,是定序数据,如学历、商品的质量等级等。

       数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的类型

       1、探索性数据分析

       探索性数据分析是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基命名。

       2、定性数据分析

       定性数据分析又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。

       3、离线数据分析

       离线数据分析用于较复杂和耗时的数据分析和处理,一般通常构建在云计算平台之上,如开源的HDFS文件系统和MapReduce运算框架。Hadoop机群包含数百台乃至数千台服务器,存储了数PB乃至数+PB的数据,每天运行着成千上万的离线数据分析作业,每个作业处理几百MB到几百TB甚至更多的数据,运行时间为几分钟、几小时、几天甚至更长。

       以上内容参考百度百科-数据分析

如何对数据进行统计分析?

       

        2007年10月北京自考《市场调查》真题简答题第3题

        请简述至少6种对数据进行统计分析的方法。

答: 1)频次分布。

        2)平均数和标准差。

       

        3)相关分析。

        4)回归分析就是根据已知的现象对未知的现象作出预测的一种科学方法。

        5)聚类分析是按照个体的特征将它们加以分类,使同一类别内的个体具有尽可能高的同质性,而类别之间则具有尽可能高的异质性。尤其是在对消费者进行细分时,我们通常会使用聚类分析的方法。

        6)因子分析是一种多变量化简技术,目的是分解原始变量,从中归纳出潜在的“类别”。

        7)联合分析是一种评价消费者偏好的方法它采用分解的办法,即让消费者给一系列的产品轮廓赋值,用这些赋值来计算偏好参数。这些参数可以是分值、权重、理想点等等。

        

        

       如下:

       比较性别(分类变量,定性数据)使用卡方检验,比较年龄(连续型变量,定量数据)使用单因素方差分析。

       分析→描述性统计→交叉表,然后将性别选入行变量框,分组选入列变量框(行、列变量反过来选没有影响),点击统计按钮,勾选卡方选项即可。

       分析→比较平均值→单因素 ANOVA,将年龄选入因变量框,分组选入因子框,点击选项按钮,勾选描述性,方差同质性检验(也就是方差齐性检验)即可。

1.对数据进行统计分析前,务必了解清楚分析方法使用的前提假设条件。

       2. 经 ANOVA(或 Kruskal-Wallis test)检验差异有统计学意义(alpha = 0.05),需要对每两个均数进行比较,需要采用上图所述“两两比较方法”,而不能直接对每两组数据进行t-test(或 Mann-Whitney U-test),因为会增加犯 I 类错误 的概率:

       例如三组数据资料,ANOVA结果显示?p?< 0.05;然后每两组均数t-test比较一次,则需比较3次,那么比较3次至少有一次犯 I 类错误 的概率就是 alpha' = 1-0.95^3 = 0.1426 > 0.05。

       3.第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误。

       4.对于双样本t-test讨论:

       z-test:大样本;>30;z分布。

       t-test:小样本;<30;t分布。

       但是,对于 > 30 的样本,Z-test检验要求知道总体参数的标准差,在理论上成立,事实上总体参数的标准差未知,实际应用中一般使用t-test。

       5. 小知识:如何选取两两比较的方法?

       5-1、SNK 法最为常用,但当两两比较的次数极多时,该方法的假阳性很高,最终可以达到 100%。因此比较次数 较多时,不推荐使用。

       5-2、若存在明显的对照组,要进行的是“验证性研究”,即计划好的某两个或几个组间的比较,宜用 LSD 法。

       5-3、若设计了对照组,要进行 k-1 个组与某个对照组之间的比较,宜用 Dunnett 法。

       5-4、若需进行多个均数间的两两比较(探索性研究),且各组人数相等,宜用 Tukey法。

       5-5、根据对所研究领域内相关研究的文献检索,参照所研究领域内的惯例选择适当的方法。

       好了,今天关于“数据统计分析”的话题就讲到这里了。希望大家能够通过我的讲解对“数据统计分析”有更全面、深入的了解,并且能够在今后的学习中更好地运用所学知识。

上一篇:欧美seo查询

下一篇:河源seo