您现在的位置是: 首页 > SEO优化 SEO优化
sem扫描电子显微镜
zmhk 2024-05-22 人已围观
简介sem扫描电子显微镜 下面,我将以我的观点和见解来回答大家关于sem扫描电子显微镜的问题,希望我的回答能够帮助到大家。现在,让我们开始聊一聊sem扫描电子显微镜的话题。1.sem测试主要测
下面,我将以我的观点和见解来回答大家关于sem扫描电子显微镜的问题,希望我的回答能够帮助到大家。现在,让我们开始聊一聊sem扫描电子显微镜的话题。
1.sem测试主要测什么
2.扫描电镜
3.扫描电子显微镜
4.知识扫描电镜(SEM)知识大全
sem测试主要测什么
sem测试主要测形貌、能谱、镀金。1、形貌:
仪器放大倍数范围是100倍-20W倍,常规样品可以拍摄到8-10W倍,导电性不好或磁性样品大于8W倍可能会不清晰。
2、能谱:
SEM能谱一般只能测C(含C)以后的元素,如果需要打能谱,需要备注好测试位置以及能谱打哪些元素,需要注意的是制样时待测元素不能与基底成分有重合,如果要测C元素,样品不要分散到含C的基底上,可以分散到硅片,锡纸上,如果要测Si元素,注意不要制样到硅片上。
3、镀金:
为了保证拍摄效果,一般导电差或者是强磁性的样品都需要镀金之后进行拍摄。
仪器简介:
扫描电子显微镜(SEM)是利用二次电子和背散射电子信号,通过真空系统、电子束系统和成像系统获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等的一种分析仪器。
随着科学技术水平的提高,其放大倍数可达几十万倍,分辨率可达纳米级别,是形貌和成分分析领域极其重要的一种工具。
sem工作原理:
二次电子:
二次电子成象是使用扫描电镜所获得的各种图象中应用最广泛,分辨本领最高的一种图象。
二次电子成象是由电子枪发射的电子束最高可达30keV,经会聚透镜、物镜缩小和聚焦,在样品表面形成一个具有一定能量、强度、斑点直径的电子束,在扫描线圈的磁场作用下,入射电子束在样品表面上按照一定的空间和时间顺序做光栅式逐点扫描。
背散射电子:
背散射电子是电子束轰击样品过程中被样品反射回来的部分电子,包括被弹性背散射电子和非弹性背散射电子。扫描电镜中所指的背散射电子多指弹性背散射电子,其产生于距离样品表面几百纳米深度,分辨率低于二次电子图像分辨率。
特征X射线:
高能电子束轰击样品时将样品中原子的内层电子电离,原子处于较高激发态,外层高能量电子向内层跃迁从而释放能量,这部分辐射能量成为原子的特征X射线,这些特征X射线可以用来鉴别组成成分及样品中的元素。
扫描电镜
1、制样:成功制备出所要观察的位置,样品如果不导电,可能需要镀金
2、环境:电镜处在无振动干扰和无磁场干扰的环境下
3、设备:电镜电子枪仍在合理的使用时间内
4、拍摄:找到拍摄位置,选择合适距离,选择合适探头→对中→调像散→聚焦,反复操作至最清晰
扫描电子显微镜
扫描电子显微镜(SEM)是1965年以后才迅速发展起来的新型电子仪器。其主要特点可归纳为:①仪器分辨率高;②仪器的放大倍数范围大,一般可达15~180000倍,并在此范围内连续可调;③图像景深大,富有立体感;④样品制备简单,可不破坏样品;⑤在SEM上装上必要的专用附件——能谱仪(EDX),以实现一机多用,在观察形貌像的同时,还可对样品的微区进行成分分析。一、扫描电子显微镜(SEM)的基本结构及原理
扫描电镜基本上是由电子光学系统、信号接收处理显示系统、供电系统、真空系统等四部分组成。图13-2-1是它的前两部分结构原理方框图。电子光学部分只有起聚焦作用的汇聚透镜,它们的作用是用信号收受处理显示系统来完成的。
图13-2-1 SEM的基本结构示意图
在扫描电镜中,电子枪发射出来的电子束,经3个电磁透镜聚焦,成直径为20 μm~25 ?的电子束。置于末级透镜上部的扫描线圈能使电子束在试样表面上做光栅状扫描。试样在电子束作用下,激发出各种信号,信号的强度取决于试样表面的形貌、受激区域的成分和晶体取向。试样附近的探测器把激发出的电子信号接受下来,经信号处理放大系统后,输送到阴极射线管(显像管)的栅极以调制显像管的亮度。由于显像管中的电子束和镜筒中的电子束是同步扫描的,显像管亮度是由试样激发出的电子信号强度来调制的,由试样表面任一点所收集来的信号强度与显像管屏上相应点亮度一一对应,因此试样状态不同,相应的亮度也必然不同。由此,得到的像一定是试样形貌的反映。若在试样斜上方安置的波谱仪和能谱仪,收集特征X射线的波长和能量,则可做成分分析。
值得注意的是,入射电子束在试样表面上是逐点扫描的,像是逐点记录的,因此试样各点所激发出来的各种信号都可选录出来,并可同时在相邻的几个显像管上或X—Y记录仪上显示出来,这给试样综合分析带来极大的方便。
二、高能电子束与样品的相互作用
并从样品中激发出各种信息。对于宝石工作者,最常用的是二次电子、背散射电子和特征X射线。上述信息产生的机理各异,采用不同的检测器,选择性地接收某一信息就能对样品进行成分分析(特征X射线)或形貌观察(二次电子和背散射电子)。这些信息主要有以下的特征:
1.二次电子(SE)
从距样品表面100 ?左右的深度范围内激发的低能量电子(一般为0~50 eV左右)发生非弹性碰撞。二次电子像是SEM中应用最广、分辨率最高的一种图像,成像原理亦有一定的代表性。高能入射电子束(一般为10~35 keV)由扫描线圈磁场的控制,在样品表面上按一定的时间、空间顺序作光栅式扫描,而从试样中激发出二次电子。被激发出的二次电子经二次电子收集极、闪烁体、光导管、光电倍增管以及视频放大器,放大成足够强的电信号,用以调制显像管的亮度。由于入射电子束在样品上的扫描和显像管的电子束在荧光屏上的扫描用同一个扫描发生器调制,这就保证了样品上任一物点与荧光屏上任一“像点”在时间与空间上一一对应;同时,二次电子激发量随试样表面凹凸程度的变化而变化,所以,显像管荧光屏上显现的是一幅明暗程度不同的反映样品表面形貌的二次电子像。由于二次电子具有低的能量,为了收集到足够强的信息,二次电子检测器的收集必须处于正电位(一般为+250 V ),在这个正电位的作用下,试样表面向各个方向发射的二次电子都被拉向收集极(图13-2-2a),这就使二次电子像成为无影像,观察起来更真实、更直观、更有立体感。
2.背散射电子(BE)
从距样品表面0.1~1 μm的深度范围内散射回来的入射电子,其能量近似等于原入射电子的能量发生弹性碰撞。背散射电子像的成像过程几乎与二次电子像相同,只不过是采用不同的探测器接收不同的信息而已,如图13-2-2所示。
图13-2-2 二次电子图像和背散射电子图像的照明效果
(据S.Kimoto,1972)
a:二次电子检测方法;a′:二次电子图像的照明效果;b:背散射电子检测方法;b′:背散射电子图像的照明效果
3.特征X射线
样品中被激发了的元素特征X射线释放出来(发射深度在0.5~5μm范围内)。而要对样品进行微区的元素的成分分析,则需借助于被激发的特征X射线。这就是通常所谓的“电子探针分析”,又通常把测定特征X射线波长的方法叫波长色散法(WDS);测定特征X射线能量的方法叫能量色散法(EDS)。扫描电子显微镜除了可运用于宝玉石的表面形貌外,它经常带能谱(EDS)做成分分析。EDS主要是由高效率的锂漂移硅半导体探测器、放大器、多道脉冲高度分析器和记录系统组成。样品被激发的特征X射线,入射至锂漂移硅半导体探测器中,使之产生电子—空穴对,然后转换成电流脉冲,放大,经多道脉冲高度分析器按能量高低将这些脉冲分离,由这些脉冲所处的能量位置,可知试样所含的元素的种类,由具有相应能量的脉冲数量可知该元素的相对含量。利用此方法很容易确定宝石矿物的成分。
扫描电镜若带有能谱(EDS)则不但可以不破坏样品可运用于做宝玉石形貌像,而且还能快速做成分分析(如图13-2-3,廖尚仪,2001)。因此它是鉴定和区别相似宝玉石矿物的好方法,如红色的镁铝榴石,红宝石、红尖晶石、红碧玺等,因为它们的成分不同,其能谱(EDS)图也就有较大的区别。波谱(WDS)定量分析比能谱(EDS)定量分析精确,但EDS分析速度快。
图13-2-3 蓝色钾-钠闪石的能谱图
三、SEM的微形貌观察
1.样品制备
如果选用粉状样,需要事先选择好试样台。如果是块状样,最大直径一般不超过15mm。如果单为观察形貌像,直径稍大一些(39mm)仍可以使用,但试样必须导电。如果是非导电体试样,必须在试样表面覆盖一层约200 ?厚度的碳或150 ?的金。
2.SEM形貌像的获得
图13-2-4 扫描电子显微镜下石英(a)和蓝色闪石玉(b)的二次电子像
观察试样的形貌,常用二次电子像或背散射电子像。图13-2-4是石英(a)和蓝色闪石玉(钾-钠闪石b)的二次电子像。同时由于二次电子像具有较高的分辨率和较高的放大倍数,因此,比背散射电子像更为常用。而成分分析则常采用背散射电子像。
知识扫描电镜(SEM)知识大全
扫描电子显微镜,简称扫描电镜,英文名为Scanning Electron Microscope,缩写为SEM,是利用高能量的电子束在固体样品表面扫描,激发出二次电子、背散射电子、X射线等物理信号,从而获得样品表面图像及测定元素成分的一种电子光学仪器。扫描电镜,按其功能划分,由电子光学系统、信号检测和放大系统、扫描系统、图像显示和记录系统、真空系统以及电源系统等六个部分组成(图5-1)。由电子枪发出,经电磁透镜会聚的电子束,由扫描线圈控制在固体样品表面作光栅式扫描,入射至样品中数微米深的范围内。这些高能电子与样品中原子相互作用后,使样品内产生二次电子、背散射电子、X射线等物理信号。
在入射电子的作用下从固体样品中射出的,能量小于50e V的电子都称为二次电子(Secondary Electron,常以缩写SE表示)。大部分二次电子的能量在3~5e V之间。背散射电子(Backscattered Electron,常以缩写BE表示)是被固体样品原子反射回来的入射电子,所以有时又称为反射电子(reflected electron,请勿称作背反射电子),其能量与入射电子的能量相等或接近相等。
图5-1 扫描电子显微镜的结构(未显示电源系统)
扫描电镜中的成像与闭路电视的成像相似。样品中产生的二次电子、背散射电子等物理信号可分别由检测器逐点逐行采集,并按顺序和成比例地将物理信号进行处理后输送到阴极射线管的栅极调制其亮度,显示出样品的图像。扫描电镜镜筒中的电子束在样品表面的扫描与阴极射线管中电子束在成像平面上的扫描是同步的。因此,阴极射线管上的图像与样品实物是逐点逐行一一对应的。由于样品表面各部位的形貌、成分和结构等的差异,被激发的二次电子、背散射电子数量有所不同,从而在阴极射线管上形成反映样品表面特征的明暗不同的图像。因此,扫描电镜的图像是一种衬度图像,并不是彩色图像。早期的扫描电镜图像是模拟图像,由照相底片记录。近年来图像均已数字化,可由计算机储存和显示。
由于二次电子能量较低,在距离表面10nm以上的样品内部产生的二次电子几乎全被邻近的原子吸收而无法逸出样品被检测器检测到。因此,二次电子像所反映的信息完全是样品表面的特征,是扫描电镜中使用最多的图像(图5-2)。
扫描电镜图像的特点是:① 放大倍数范围大,其有效放大倍数可从数十倍至十万倍,基本上概括了放大镜、光学显微镜至透射电镜的放大倍数范围。②分辨率高,景深大,立体感强。其二次电子图像的分辨率已达3nm,比光学显微镜约高5个数量级。在同一放大倍数下扫描电镜图像的景深比光学显微镜的景深大10~100倍。
图5-2 草莓状黄铁矿的扫描电子图像
扫描电镜对样品的基本要求是:①样品必须是干燥、清洁的固体,在高能电子束的轰击下不变形,不变质,并能经受住真空的压力。②样品必须导电。不导电的样品可在表面喷镀一层导电膜。近几年有些不导电的样品在数百伏的低加速电压下也能进行观察。因此,光片、没有盖玻璃的薄片以及断面等都能在扫描电镜中进行观察。对样品的大小也没有严格的要求,观察面积约1cm2,样品高度小于1cm较为适中。
近年来绝大多数扫描电镜都配备X射线能谱仪,有时还可配备电子背散射衍射部件,在观察图像的同时还可在原地进行微区的成分和结构分析。详情请见本章第三节和第四节的相关部分。
扫描电镜(SEM)知识大全如下所示:01、扫描电镜(SEM)是什么?
扫描电子显微镜(Scanning Electron Microscope,SEM)于1965年左右发明,其利用二次电子、背散射电子及特征X射线等信号来观察、分析样品表面的形态、特征,是介于透射电镜和光学显微镜之间的一种微观形貌观察方法。
扫描电镜可配备X射线能谱仪(EDS)、X射线波谱仪(WDS)和电子背散射衍射(EBSD)等附件,使分析显微组织、织构、取向差和微区成分同时进行。还可在样品室内配备加热、拉伸测试等装置,从而对样品进行原位、动态分析。
SEM如今在材料学、物理学、化学、生物学、考古学、地矿学以及微电子工业等领域有广泛的应用。
02、扫描电镜(SEM)基本原理
扫描电镜是利用电子枪发射电子束,高能入射电子轰击样品表面时,被激发的区域将产生二次电子、背散射电子、吸收电子、俄歇电子、阴极荧光和特征X射线等信号,通过对这些信号的接受、放大和显示成像,可观察到样品表面的特征,从而分析样品表面的形貌、结构、成分等。扫描电镜主要利用二次电子、背散射电子和特征X射线等信号对样品表面的特征进行分析。
二次电子:
二次电子指被入射电子激发出来的试样原子中的外层电子。二次电子能量很低,只有靠近试样表面几纳米深度内的电子才能逸出表面。因此,它对试样表面的状态非常敏感,主要用于扫描电镜中试样表面形貌的观察。
背散射电子:
背散射电子是入射电子在试样中经散射(弹性和非弹性散射)后,再次逸出样品表面的高能电子,其能量接近于入射电子能量。背散射电子的产额随着试样原子序数的增大而增加,所以背散射电子信号的强度与样品的化学组成有关,能显示原子序数衬度,可用于对试样成分作定性的分析。
二次电子像和背散射电子像的区别:
二次电子成像是用被入射电子轰击出的样品外层电子成像,能量低,只能表征样品表面,分辨率较高。
背散射电子是入射电子被样品散射然后成像,能量很高,接近入射电子。可以反应样品内部比较深的信息,分辨率相对较低。
特征X射线:
入射电子将试样原子内层电子激发后,外层电子向内层电子跃迁时产生的具有特殊能量的电磁辐射。特征X射线的能量为原子两壳层的能量差,而元素原子的各个电子能级能量为确定值,因此特征X射线可用于分析试样的组成成分。
注由于其他电子的分辨率都没有二次电子的分辨率高,所以扫描电镜的分辨率即为二次电子的分辨率。
03、扫描电镜(SEM)设备
扫描电镜主要由电子光学系统,信号收集及处理系统,信号显示及记录系统,真空系统,计算机控制系统等部分组成。
电子光学系统由电子枪、电磁透镜、扫描线圈、试样室等部件组成。电子枪发射的高能电子束经两级电磁透镜聚焦后汇聚成一个几纳米大小的束斑,电子束在扫描线圈的作用下发生偏转并在试样表面和屏幕上做同步扫描,激发出试样表面的多种信号。
电子束与样品室中的样品表面相互作用激发的二次电子,背散射电子首先打到二次电子探测器和背散射电子探测器中的闪烁体上产生光,再经光电倍增管将光信号转换为电信号,进一步经前置放大器成为有足够功率的输出信号,最终在阴极射线管(CRT)上成放大像。
X射线信号由样品室中SEM配备的能谱仪(或波谱仪)附件收集,经锂漂移硅探测器、前置放大器和主放大器以及脉冲处理器在显示器中展示X射线能谱图(或波谱图),用于元素的定性和定量分析。
04、扫描电镜(SEM)应用场景
1、观察纳米材料:SEM具有很高的分辨率,可观察组成材料的颗粒或微晶尺寸(0.1-100 nm)。
2、分析材料断口:SEM景深大,图像富立体感,具有三维形态,能够从断口形貌呈现材料断裂的本质及断裂机理,适合在材料断裂原因、事故原因、工艺合理性等方面进行分析。
3、观察大试样:它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背散射电子像)。
4、观察厚试样:其在观察厚试样时,能得到高的分辨率和最真实的形貌。
5、观察试样的各个区域的细节:试样在样品室中可动的范围非常大,可以在三度空间内以6个自由度运动(即三度空间平移、三度空间旋转),可方便观察不规则试样的各个区域。
6、在大视场、低放大倍数下观察样品,用扫描电镜观察试样的视场大:大视场、低倍数观察样品的形貌对有些领域是很必要的,如刑事侦察和考古。
7、进行从高倍到低倍的连续观察:扫描电镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行分析特别方便。
8、观察生物试样:由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。
9、进行动态观察:如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以观察相变、断裂等动态的变化过程,即原位分析。
10、从试样表面形貌获取多方面材料信息:SEM结合能谱可以测定金属及合金中各种元素的偏析,对金属间化合物相、碳化物相、氮化物相及铌化物相等进行观察和成分鉴定;对钢铁组织中晶界处夹杂物或第二相观察以及成分鉴定。
对零部件的失效分析(如畸变失效,断裂失效,磨损失效和腐蚀失效)以及失效件表面的析出物和腐蚀产物的鉴别。对于抛光后的金属样品,扫描电镜结合EBSD可进一步对晶体结构、织构、取向差等进行解析。
05、扫描电镜(SEM)分析实例
1、二次电子像分析
下图为经抛光腐蚀之后金相样品的二次电子像,可看出SEM图像的分辨率及立体感均远好于光学金相照片。光镜下显示不清的细节在电镜中可清晰地呈现,如珠光体中的Fe3C与铁素体的层片形态及回火组织中析出的细小碳化物等。
2、背散射电子像分析
下图为ZrO2-Al2O3-SiO2系耐火材料的背散射电子像。由于ZrO2相平均原子序数远高于Al2O3相和SiO2相,所以图中白色相为斜错石,小的白色粒状斜错石与灰色莫来石混合区为莫来石-斜锆石共析体,基体灰色相为莫来石。
3、断口分析
典型功能陶瓷沿晶断裂的二次电子像,断裂均沿晶界发生,有晶粒拔出现象,晶粒表面光滑,还可以看到明显的晶界相。
06、扫描电镜(SEM)样品要求及制备方法
样品制备通常包括取样、清洗、粘样、镀膜处理等步骤。
1、块状样品
清洁样品表面的油污、粉尘等污染物,如可用洗涤剂和有机溶剂进行超声清洗,防止污染物影响分析结果和污染样品室。
对于导电的块状样品,要求大小适合样品座尺寸,用导电胶粘在样品座上即可。对于块状非导电样品或者导电性差的样品,则需要先在其表面镀膜,增加样品的导电性,并可防止样品的热损伤。
2、粉末样品
先在样品座上粘一层导电胶,然后将粉末均匀撒在导电胶上,并吹去未粘牢的粉末(如可用洗耳球)。也以将粉末溶解在合适的分散剂中(常用的分散剂有乙醇、丙酮、水和0.1%SDS),超声分散后,用吸管或移液枪滴加到硅片或者铜网上,烘干或晾干。导电类粉末可以直接进行扫描电镜观察,不导电的粉末样品需先喷金处理后再进行观察。
07、扫描电镜的优缺点
优点
①、有较高的放大倍数,通常在20-200000倍之间连续可调;
②、有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;
③、试样制备简单、样品尺寸相对较大(通常样品室可容纳几十毫米的样品)、可测试的样品形式多(断口、块体、粉末等);
④、可配备X射线能谱仪(EDS)、X射线波谱仪(WDS)和电子背散射衍射(EBSD)附件,使分析显微组织、织构、取向差和微区成分同时进行。
缺点
①、分辨率不及TEM和AFM(原子力显微镜),不能观察到物质的分子和原子像;
②、试样需置于真空环境下观察,限制了样品的类型;
③、只能观察样品表面形貌,表面以下结构不能探测;
④、没有高度方向信息;
⑤不能观察液体样品。
好了,关于“sem扫描电子显微镜”的话题就讲到这里了。希望大家能够通过我的讲解对“sem扫描电子显微镜”有更全面、深入的了解,并且能够在今后的工作中更好地运用所学知识。
上一篇:seo 查_seo查询